Lamps in slim rectangular planar semimodular lattices
نویسندگان
چکیده
A planar (upper) semimodular lattice L is slim if the five-element nondistributive modular M3 does not occur among its sublattices. (Planar lattices are finite by definition.) Slim rectangular as particular were defined G. Grätzer and E. Knapp in 2007. In 2009, they also proved that congruence of with at least three elements same those lattices. order to provide an effective tool for studying these lattices, we introduce concept lamps prove several their properties. Lamps tools based on them allow us a new easy way satisfy two previously known Also, use four properties including Two-pendant Four-crown Property Forbidden Marriage Property.
منابع مشابه
Slim Semimodular Lattices. I. A Visual Approach
A finite lattice L is called slim if no three join-irreducible elements of L form an antichain. Slim lattices are planar. Slim semimodular lattices play the main role in [3], where lattice theory is applied to a purely group theoretical problem. After exploring some easy properties of slim lattices and slim semimodular lattices, we give two visual structure theorems for slim semimodular lattices.
متن کاملNotes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices
A recent result of G. Czédli and E. T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding “forks”. We give a construction that accomplishes the same by deleting elements, by “resections”.
متن کاملFrankl’s Conjecture for Large Semimodular and Planar Semimodular Lattices
A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element f ∈ L such that at most half of the elements x of L satisfy f ≤ x. Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let m denote...
متن کاملNotes on Planar Semimodular Lattices. Ii. Congruences
We show that in a finite semimodular lattice, the ordering of joinirreducible congruences is done in a special type of sublattice, we call a tight S7.
متن کاملSlim Semimodular Lattices. II. A Description by Patchwork Systems
Rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean a rectangular lattice whose weak corners are coatoms. As a sort of gluings, we introduce the concept of a patchwork system. We prove that every glued sum indecomposable planar semimodular lattice is a patchwork of its maximal patch lattice intervals “sewn togeth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Scientiarum Mathematicarum
سال: 2021
ISSN: ['0324-5462', '2064-8316', '0001-6969']
DOI: https://doi.org/10.14232/actasm-021-865-y